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ring appears to be a less probable mechanism; in par­
ticular, the intermediate or transition state involved in 
the facile reaction of the trimethylammonium salt with 
fe/'f-butyllithium 5 would appear to be highly strained. 

C(CH3), 

N(CH3), 

Although other mechanisms can be written that in­
volve 3, such as direct reaction with RLi, the carbanion 
chain mechanism is supported by stoichiometry. 
Only a 1.1:1 molar ratio of RLi to ligand is required 
to effect > 9 5 % conversion to product. Furthermore, 
analogy is available in the apparent involvement of a 
"ferrocyne" intermediate in some reactions of chloro-
ferrocene with bases.'1 

These reactions add to the growing chemistry of 
organoactinide compounds.12 They provide important 
chemical evidence of the strength and covalency of the 
metal-ligand bond in uranocene compounds and prom­
ise to provide a useful new route to other uranocene 
derivatives. 
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Cysteine-Catalyzed Hydrogen Isotope Exchange at 
the 5 Position of Uridylic Acid 

Sir: 

Recent reports from several laboratories have shown 
that some sulfur-containing agents such as 2-mercapto-
ethylamine,1 bisulfite,23 and glutathione4 are effective 
in catalyzing the hydrogen isotope exchange of py-
rimidine nucleosides at the 5 position. This type of 
study is of considerable interest because such a method 
is potentially useful for labeling nucleic acids. The 
chemically induced hydrogen isotope exchange of 
uridine has also received attention as a model for 
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Figure 1. pD profile of the hydrogen-deuterium exchange at posi­
tion 5 of uridine 5'-phosphate and of 3-methyluridine. Incubation 
was at 37 ° for 24 hr. Each D2O solution (1 ml) contained 100 mg of 
disodium uridine 5'-phosphate or 80 mg of 3-methyluridine. pD 
was adjusted by the addition of NaOD or DCl, and no pD change 
was detected during the incubation. Exchanges of uridine 5 '-phos­
phate: (O) cysteine (0.5 M); (•) 2-mercaptoethylamine (0.5 M); 
(X) 2-mercaptoethanol (J.2 M); (A) 2-mercaptoethanol (1.2 M) + 
trimethylamine(l M). Exchange of 3-methyluridine: (9) cysteine 
(0.5 M). 

enzymic alkylation of uracil derivatives, since thy-
midylate synthetase is known to catalyze the hydrogen 
isotope exchange as well as methylation.6 We wish to 
report that cysteine is a very efficient catalyst for the 
hydrogen isotope exchange of uridine 5'-phosphate at 
position 5, and that it exerts the catalytic effect by a 
cooperative function of the SH and amino groups. 

Incubation of uridine 5'-phosphate in D2O solution 
containing 1.0 M L-cysteine at 37° and pD 8.8 resulted 
in 100% hydrogen-deuterium exchange at the 5 posi­
tion after 7 days, while no significant change was de­
tected in the absence of cysteine under the same condi­
tions. The extent of the exchange was determined by 
nmr as detailed elsewhere3 utilizing the change in shape 
of the proton signal at the 6 position.* The pD de­
pendence of the exchange catalyzed either by cysteine, 
2-mercaptoethylamine, or 2-mercaptoethanol is pre­
sented in Figure 1. The cysteine-catalyzed exchange 
of uridine 5'-phosphate at pD 9.0 and 37° proceeded 
by pseudo-first-order kinetics. The apparent rate con­
stants at various concentrations of cysteine were: con­
centration of cysteine/rate constant (hr -1), 0.25 Mj 
0.819 X 10-2; 0.5 M/2.29 X 1O-2; 0.75 Af/3.98 X 
ICh2; 1.0 M/6.05 X 1O-2. The method of cysteine 
catalysis, which can be carried out in nearly neutral 
solutions, appears to be more effective compared with 
other known methods.6-11 Thus, most of the reported 
procedures for the exchange involve reactions at higher 
temperatures, and the bisulfite-amine method which 
can be done at 37° is still less efficient than the cysteine 
catalysis when compared at an equal reagent concen­
tration. 

3-Methyluridine also underwent the hydrogen-deu-
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terium exchange at the 5 position by the catalysis with 
cysteine (Figure 1). This fact together with the pD-
rate profiles shown in Figure 1 indicate that the reaction 
involves the unprotonated form of uridine and the 
mercapto anion as the reactive species (pA"a values for 
H3+NCH2CH(COO-)SH <± H3+NCH2CH(COO-)S~ 
and HOCH2CH1SH <=> HOCH2CH2S- are 8.712 and 
9.4, ,3 respectively). A cationic amino group at the /3 
position of the SH in the molecule facilitates the dis­
sociation of the SH, thereby making the compound 
more effective than other mercaptans such as 2-mer-
captoethanol at a rather lower pH region. Further­
more, when the effectiveness of cysteine was compared 
with that of 2-mercaptoethanol at pD 10.0 where the 
SH of either reagent mostly dissociates, the per cent 
H exchange found for 3-methyluridine by 24-hr incuba­
tion was 38.5% with 0.5 M cysteine, and only 9.9% 
with 0.5 M 2-mercaptoethanol. Therefore, the amino 
group itself appears to play a role in the catalysis. 
This seems reasonable in view of the recent finding of 
an accelerating effect of amines on the bisulfite-cat-
alyzed hydrogen isotope exchange at position 5 of 
uridine.3 The effect of supplemented trialkylamines 
on the cysteine catalysis at pD 9.0 was investigated and 
a marked accelerating effect was observed: [catalyst], 
Ar0bsd at 37° (hr-1), [1.0 M trimethylamine + 0.5 M 
cysteine], 7.67 X 10"2; [1.0 M triethylamine + 0.5 M 
cysteine], 4.04 X 10-2. In analogy to the established 
mechanism of the bisulfite-amine catalysis of the hy­
drogen isotope exchange of uridine, the cysteine reac­
tion may be represented as illustrated in Scheme I. A 

Scheme I 
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possible way of the action of an amine is to shift the 
equilibrium, 1 <=± 2, to the adduct side, for it is known 
that amines shift the equilibrium, uridine *± 5,6-dihy-
drouridine 6-sulfonate, to the adduct side.3 The fact 
that the increase of the concentration of cysteine results 
in a greater increase in the exchange rate than that ex­
pected from the first-order kinetics (see above) is con­
sistent with the participation of a second molecule of 
cysteine (as an amine) in the rate determining step. 
Another possible role of the amino group of cysteine is 
to abstract the hydrogen at position 5 of 2, conceivably 
through an intramolecular process. Trimethylamine 
supplemented to 2-mercaptoethanol did enhance the 
rate of the exchange, but the enhanced rate was still 
considerably smaller than that observed for the catalysis 
by the cysteine type compound having an intramolec­
ular amino group. Thus, the A:0bsd values at pD 9.5 
and 37° were 0.251 X lO"2 hr-1 with 0.5 M trimethyl­
amine + 0.5 M 2-mercaptoethanol and 0.151 X 10~2 

hr - 1 with 0.5 M 2-mercaptoethanol (see also Figure 1). 
Furthermore, in consistency with the proposed mech­
anism, either iV-acetylcysteine or S-methylcysteine, or 
an equimolar mixture of the two agents, was essentially 
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ineffective as the catalyst. Glutathione (0.3 M) was 
not effective at 37° and pD 9, in contrast to the reported 
catalytic effect at 80°.4 

Based on the glutathione experiment, Kalman4 has 
suggested a mechanism for thymidylate synthetase 
which involves intermediary formation of a 5,6-dihy-
drouracil-6-mercapto compound by the addition of an 
enzyme SH group, which is known to be essential for 
the enzymic action,14 across the 5,6-double bond of 
uracil. Recently, Santi and Sakai15 have proposed the 
presence of an amino group at the active site of this 
enzyme on the basis of inhibition by 5-formyl-2'-de-
oxyuridylic acid. The above-described finding of a 
cooperative function of the SH and the amino groups 
in cysteine demonstrates that such enzymic mechanism 
is possible. 
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An Active-Site Titrant for Arylsulfate Sulfohydrolase 

Sir: 
A dearth of knowledge exists concerning the nature 

of the active sites of arylsulfate sulfohydrolases as well 
as their physiological significance. 1^ We report herein 
data to implicate o-nitrophenyl oxalate as the first 
known active-site titrant for arylsulfate sulfohydrolase 
II (EC 3.1.6.1) from Asper. oryzae. 

Titration of the enzymatic active site with o-nitro­
phenyl oxalate3 was determined by assaying for residual 
activity with 2-chloro-4-nitrophenyl and/or p-nitro-
phenyl sulfate as substrates in 0.4 M acetate buffer, pH 
4.8, 37°. Sedimentation equilibrium measurements 
and gel electrophoresis indicate that the enzyme is a 
dimer composed of two identical subunits of ca. 
45,000 molecular weight.4 Extrapolation of residual 
activity as a function of inhibitor concentration reveals 
that completely inactivated protein has a 2.1:1 o-nitro­
phenyl oxalate: arylsulfate sulfohydrolase stoichiom-
etry (Figure 1). 

Further experiments show that a competitive re­
versible inhibitor, /?-nitrophenyl phosphate,1 will pro­
tect against inactivation caused by o-nitrophenyl oxalate 
(Figure 2). The time-dependent loss of enzymatic 
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